Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels
نویسندگان
چکیده
To understand the molecular mechanism of ion permeation in pentameric ligand-gated ion channels (pLGIC), we solved the structure of an open form of GLIC, a prokaryotic pLGIC, at 2.4 Å. Anomalous diffraction data were used to place bound anions and cations. This reveals ordered water molecules at the level of two rings of hydroxylated residues (named Ser6' and Thr2') that contribute to the ion selectivity filter. Two water pentagons are observed, a self-stabilized ice-like water pentagon and a second wider water pentagon, with one sodium ion between them. Single-channel electrophysiology shows that the side-chain hydroxyl of Ser6' is crucial for ion translocation. Simulations and electrostatics calculations complemented the description of hydration in the pore and suggest that the water pentagons observed in the crystal are important for the ion to cross hydrophobic constriction barriers. Simulations that pull a cation through the pore reveal that residue Ser6' actively contributes to ion translocation by reorienting its side chain when the ion is going through the pore. Generalization of these findings to the pLGIC family is proposed.
منابع مشابه
Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel.
GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and ...
متن کاملEmerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels
Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and ...
متن کاملStructural Basis of Alcohol Inhibition of the Pentameric Ligand-Gated Ion Channel ELIC.
The structural basis for alcohol modulation of neuronal pentameric ligand-gated ion channels (pLGICs) remains elusive. We determined an inhibitory mechanism of alcohol on the pLGIC Erwinia chrysanthemi (ELIC) through direct binding to the pore. X-ray structures of ELIC co-crystallized with 2-bromoethanol, in both the absence and presence of agonist, reveal 2-bromoethanol binding in the pore nea...
متن کاملDecrypting the Sequence of Structural Events during the Gating Transition of Pentameric Ligand-Gated Ion Channels Based on an Interpolated Elastic Network Model
Despite many experimental and computational studies of the gating transition of pentameric ligand-gated ion channels (pLGICs), the structural basis of how ligand binding couples to channel gating remains unknown. By using a newly developed interpolated elastic network model (iENM), we have attempted to compute a likely transition pathway from the closed- to the open-channel conformation of pLGI...
متن کاملSeeking structural specificity: direct modulation of pentameric ligand-gated ion channels by alcohols and general anesthetics.
Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 32 شماره
صفحات -
تاریخ انتشار 2013